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Cell death and autophagy in prion diseases 
(transmissible spongiform encephalopathies)
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A b s t r a c t

Neuronal autophagy, like apoptosis, is one of the mechanisms of programmed cell death. In this review, we
summarize current information about autophagy in naturally occurring and experimentally induced scrapie,
Creutzfeldt-Jakob disease and Gerstmann-Sträussler-Scheinker syndrome against the broad background of neural
degenerations in transmissible spongiform encephalopathies (TSEs). Typically a sequence of events is observed:
from a part of the neuronal cytoplasm sequestrated by concentric arrays of double membranes (phagophores);
through the enclosure of the cytoplasm and membrane proliferation; to a final transformation of the large area of
the cytoplasm into a collection of autophagic vacuoles of different sizes. These autophagic vacuoles form not only
in neuronal perikarya but also in neurites and synapses. On the basis of ultrastructural studies, we suggest that
autophagy may play a major role in transmissible spongiform encephalopathies and may even participate in the
formation of spongiform change. 
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Introduction

The transmissible spongiform encephalopathies

(TSEs), or prion diseases, are a group of neuro-

degenerative disorders which include kuru (Fig. 1)

[73,89,135], Creutzfeldt-Jakob disease (CJD) [76],

Gerstmann-Sträussler-Scheinker (GSS) disease [157],

and fatal familial insomnia (FFI) in humans [147],

natural scrapie in sheep (Fig. 2), goats [53,54,57], and

mouflons [224], transmissible mink encephalopathy

(TME) in ranch-reared mink [35], chronic wasting

disease (CWD) of mule deer and elk in North America

[137,221,222], bovine spongiform encephalopathy

(BSE) or “mad cow disease” [218], and its analogues in

several exotic species of antelopes [55,68,106,115] and

wild felids in zoological gardens [223], and feline

spongiform encephalopathy (FSE) in domestic cats

[226].

The cause of these disorders is still not completely

understood. Despite a wide acceptance for the prion
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FFiigg..  11..  Kuru-affected children. Courtesy of Dr
Carleton Gajdusek, Amsterdam, the Netherlands

FFiigg..  22..  Scrapie in a Romanov sheep. Courtesy of
Prof. Jeanne Brugere- Picoux, Paris, France

theory, the name of the infectious agent (a “prion”)

still reflects our ignorance or at the very least, our

uncertainties of its nature [44,139,152]. Those who

prefer to view this pathogen as composed predo-

minantly or exclusively of a pathologically misfolded

protein use the term “prion” [184]; hence the term

“prion diseases” [67,217]. In this review, we will use the

term “PrPc” to designate the normal soluble and prote-

inase K-sensitive cellular protein, and the term “PrPTSE”

to designate all of its pathological forms, including

intermediate species that are sensitive to proteinase K

(PK) digestion as well as the mature amyloid species

that is insoluble and partially PK-resistant [32].

Other hypotheses, albeit less widely accepted, are

still not formally rejected. The “virino” hypothesis

suggests that the pathogen is a molecular chimera

composed of a yet-to-be-discovered nucleic acid and

a shell-protein, which is host-encoded (could be PrP)

[113]. The fact that RNA enhances conversion of PrPc

into PrPTSE in vitro is interesting in this context [56].

The “unified theory” of Weissmann [216], not unlike

the virino theory, suggests that the agent is 

a molecular chimera in which PrPTSE confers infectivity

and an unidentified oligonucleotide specifies strain

characteristics. The virus hypothesis simply suggests

that the pathogen is a yet-to-be-identified uncon-

ventional virus [58,72,216]. To this end, virus-like

particles have been repeatedly shown in all TSEs

studied so far [140,144,153].

PrP, the PrP gene, the “prion hypothesis”
and strains of the pathogen

PrPc is a highly conserved sialoglycoprotein

encoded by a cellular gene mapped to chromosome

20 in man (Prion Protein; PRNP) and chromosome 2

in mouse (Fig. 3) [7,16,45,90,176,202,204]. The gene

is ubiquitous [193,194,225]; it has been cloned from

numerous mammalian species, included marsupials,

and there are analogues of this gene in birds [71,93],

reptiles [200], amphibians [209], and even fish [177]. 
The molecular biology of PrP has been extensively

studied. Human PrPc contains 253 amino acids
encoded by an intronless open reading frame (ORF)
(Fig. 3) [7]. As a result, alternative splicing does not
occur. Three forms of PrPc exist – one completely
translocated and two transmembrane variants, CtmPrP
and NtmPrP [94,95,214] (Fig. 4) – and the sequence
encoding residues 151-165 that form the transmem-
brane region is highly conserved [214]. Furthermore,
PrPc undergoes endoproteolytic cleavage to yield 
17 kDa N-terminally truncated form C1, while PrPTSE

yields a slightly larger peptide designated C2 (Fig. 3)
[43].

The “prion” hypothesis, which is deeply rooted in
the association between PrPTSE and infectivity, 
was formulated by Stanley B. Prusiner in 1982
[10,59,161,181,182]. The hypothesis postulated that
the scrapie agent was a proteinaceous infectious
particle, because infectivity was dependent on
protein but resistant to methods known to
inactivate nucleic acids. A similar proposal was
presented a decade earlier by Gibbons and Hunter
[75], Griffith [85], and Levine [130], who all expanded
the earlier suggestion of Alper and her co-workers
[1], based on irradiation studies, that scrapie agent
was devoid of disease-specific nucleic acid.
Furthermore, other investigators in the late 1970s
and early 1980s had found that scrapie infectivity
was sensitive to proteolytic digestion [47,166].
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FFiigg..  33..  Scheme of PrP generation. The PRNP gene (the name PRP was already used for Prolyine Rich Protein)
is located on chromosome 20. There are 2 exons in humans (in some other species such as mice and cattle,
three) and the whole open reading frame (ORF) is located within exon 2 (or 3 in 3-exon species). During
the maturation process two glycans (CHO) at positions 181 and 197 are added. The final product is a cellular
isoform of PrP (PrPc) which is converted into pathological isoform (PrPTSE). PrPc undergoes endoproteolytic
cleavage (red arrows) to yield 17 kDa N-terminally truncated form C1 while PrPTSE yields a slightly larger
peptide designated C2. Following proteinase treatment (black arrows), PrPc is completely degraded
whereas PrPTSE is only partially degraded and yields a “core protein” designated PrP 27-30.

The PrP species found to copurify with scrapie

infectivity, PrP 27-30, is a proteolytic cleavage

product of pathologically misfolded protein, PrPTSE.

However, PrPTSE is not the primary product of the

cellular gene, which encodes both PrPc and PrPTSE

(Fig. 3). The amino acid sequences and posttrans-

lational modifications, i.e. glycosylation and 

a glycophosphatidylinositol (GPI) anchor, of PrPc

and PrPTSE are identical, but their physico-chemical

characteristics are strikingly different [207,208]. 

In particular, PrPc is completely degraded by limited

proteolysis, but PrPTSE is only partially degraded,

yielding a core protein (PrP 27-30), which may be

visualised by electron microscopy as amyloid-like

fibrillar structures called scrapie-associated fibrils

(SAF) (Fig. 5) [163,164], currently better known as

prion rods [185]. 
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FFiigg..  44.. Three different forms of PrP. Completely
translocated and two transmembrane variants 
– CtmPrP and NtmPrP. C – C-terminal, N – N-terminal,
M – membrane
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Cellular trafficking of PrPc and PrPTSE

PrPc, as is true of all cell surface glycoproteins, is

synthesized first in the endoplasmic reticulum,

matured in the Golgi apparatus, and transported in

membrane-bound vesicles to the plasma membrane,

where it is usually anchored by the GPI moiety (Fig. 6).

Once it is on the cell surface, PrPc can be subjected to

endocytosis and either degraded in lysosomes or

recycled to the plasma membrane via recycling

endosomes [92,149,150,180,198]. In peripheral (PNS)

and central nervous system (CNS) neurons fast

anterograde and retrograde axonal transport of PrPc

have also been detected [11,170,171], facilitating

movement to and from neural extremities. 

Coincident with becoming infected, cells can bind

and internalize exogenous PrPTSE aggregates [97,98].

Depending on cell type, PrPTSE internalization can

involve heparan sulphate [97,98], laminin receptor

[169], and/or ferritin transporters [167]. However, the

presence of PrPc does not seem to be required as 

a receptor for exogenous PrPTSE [97,149]. 

FFiigg..  55..  Scrapie-associated fibrils (lower arrow) visualized by negative-staining electron microscopy. An upper
arrow points to protofilaments. Original magn. × 30 000; bar = 100 nm



Folia Neuropathologica 2008; 46/1 5

Neuronal cell death in prion diseases

Once cells are infected with a TSE agent in vitro,

new PrPTSE formation appears to occur on the plasma

membrane and/or along an endocytic pathway to

lysosomes [12,13,41,42]. However, in cells expressing

familial TSE-associated PrPc mutants, the acquisition

of PrPTSE-like properties can begin to occur sponta-

neously at the earliest stages of PrP biosynthesis [92].

In TSE-infected animals, it appears that PrPTSE can also

be formed at extracellular sites. This is especially likely

in scrapie-infected transgenic mice that express only

anchorless PrPc that is secreted from cells rather than

bound to membranes by the GPI moiety [46]. In these

mice, PrPTSE accumulates almost exclusively in large

extracellular amyloid plaques, which are the likely

sites of conversion to PrPTSE. 

Because the spread of TSE infections and PrPTSE

from peripheral sites to the central nervous system

follows neuroanatomical pathways [114,159, for

review, see ref. 81], it is important to understand the

neuronal transport mechanisms. Axonal transport

processes, but not the fast form, appear to be involved

[5,6,118,125,186]. However, the precise mechanisms by

which PrPTSE is transported between and within neural

cells have not been well defined in vivo. Recent 

studies in cultured neuronal cells have shown that

endocytosed exogenous PrPTSE can be found in 

Rab7-positive late endosomes and transported in

acidic vesicles along neurites to points of contact with

other cells [149]. Other in vitro studies have provided

evidence that PrPTSE can be released from cells [195] in

infectious particles that are vesicular and exosome-

like (Fig. 7) [3,64,195]. Membrane-associated scrapie

infectivity is considerably more efficient than purified

PrPTSE at inducing persistent PrPTSE production in

cultured cells [3]. Small membranous particles such as

exosomes (Fig. 6) can be released from multivesicular

FFiigg..  66..  Cellular trafficking of PrP. PrPc is synthesized first in the endoplasmic reticulum (ER), matured in the
Golgi (cis, medial and trans; red arrow) apparatus, and transported in membrane-bound vesicles to the
plasma membrane, where it is anchored by the GPI moiety. Once on the cell surface, PrPc can be subjected
to endocytosis and either degraded in lysosomes or recycled to the plasma membrane via recycling
endosomes. PrP may also be transported through the membrane (yellow arrow) as multivesicular-bodies-
derived exosomes. In TSEs, PrPTSE accumulates extracellularly (green arrows) as plaques (A) or different forms
of deposits (B). A plaque in “A” is a florid plaque of vCJD. Deposits in “B” are perineuronal deposits from
Echigo-1 strain of CJD passaged in Syrian hamsters
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FFiigg..  77..  ((AA)) Synaptic pattern of PrPTSE deposition and ((BB))  plaques in kuru affected brain. Arrows in “A” point
to focal accumulations of PrPTSE. Plaques in “B” are from a kuru specimen kindly provided by D. Carleton
Gajdusek. Bars, 0.5 μm
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bodies and fuse with the membranes of other cells,

providing a potential mechanism for the spread of

infectivity between cells [3,4,64].

Deposition of pathologically 
misfolded protein

Deposits of misfolded PrPTSE that accumulate

within the central (CNS) and peripheral nervous

system (PNS) and lymphatic tissues [138] correlate

with infectivity in most but not all situations [127,154].

Immunohistochemistry (IHC) has become the major

diagnostic tool for human prion diseases, by allowing

the detection of PrPTSE in fixed tissue sections [33].

More refined approaches, i.e. the histoblot [211] and

paraffin-embedded blot (PET) techniques, can also be

helpful [196]. A major hurdle with IHC is the

elimination PrPc labelling as no available antibodies,

including the widely used and commercially available

antibodies, can discriminate between PrPc and

misfolded PrPTSE in tissue sections. 

Several patterns of PrPTSE expression are revealed

by IHC including synaptic (the most difficult to

visualize; Fig. 7a), perivacuolar, perineuronal (Fig. 7)

and plaque-like [33]. If amyloid is visualized by routine

neuropathology (H & E, Congo red, PAS- or Alcian blue

staining), it is designated as “plaques” (Fig. 6, 7b); 

if detected only by IHC and not visible by routine

techniques, it is called “plaque-like deposits”. 

Neuronal cell death in TSEs 

The premature, primary death of nerve cells

underlies the clinical symptoms of prion diseases.

Unfortunately, despite the great efforts of researchers,

the cellular pathways leading to this neuronal loss are

not entirely clear. What is more, the question whether

there is a direct relation between the deposits of PrPTSE

and the loss of neurons still remains conjectural. As in

other neurodegenerative diseases, in TSEs apoptosis

has become the most popular concept of cell death.

However, there is no direct and convincing evidence of

apoptosis of nerve cells in most of the neurodege-

nerative diseases. In addition, the term “apoptosis” is

used in a wider sense than it was originally coined and

it has become synonymous with non-necrotic cell

death or even with programmed cell death. The data

on the role of apoptosis in prion diseases are

conflicting. Among recently recognized other types of

programmed cell death only autophagy has been

reported in TSEs but its role in prion diseases

pathology is not established. 

There is currently no consensus on the classifi-

cation of different types of programmed cell death.

One of the oldest but also still considered most

accurate classifications is based on morphology.

According to this classification introduced by

Schweichel and Merker [197], three types of

programmed cell death (PCD) are discriminated

[116,189,215,230]:

1) apoptosis,

2) autophagy,

3) cytoplasmic cell death.

Although it must be stressed that this

categorization was based on the ultrastructural

features of embryonic cells during morphogenesis,

such a classification is widely accepted for deve-

loping and mature organisms.

1. The term “apoptosis” in its original meaning refers

to a morphological phenomenon [111] characterized

by chromatin condensation, cell shrinkage, pykno-

sis, plasma membrane blebbing and fragmentation

of the nucleus (karyorrhexis). There is little or no

ultrastructural modification of other subcellular

organelles. The integrity of plasma membrane is

maintained until the late stages of the process [124].

In the end-stage, the cell breaks into small

membrane-bound fragments, called apoptotic

bodies, which are phagocytosed by macrophages or,

in the case of neurons, by microglial cells without

inciting any inflammatory response [111]. Apoptosis

is regulated by a highly conservative network of

molecules consisting of Bcl-2 family and caspases

and Apaf-1 [116,189,215,230]. The apoptotic cell

death process has a very rapid time course and is

complete within a few hours.

2. Autophagic cell death is also one of the

programmed cell death mechanisms, sometimes

called “type II programmed cell death”, in contrast

to “type I programmed cell death” (apoptosis).

Contrary to apoptosis, autophagic cell death is

characterized by abundant autophagic vacuoles in

the cytoplasm, mitochondrial dilatation, and

enlargement of both the Golgi apparatus and

endoplasmatic reticulum, which precedes nuclear

destruction. Intermediate filaments and micro-

filaments are largely preserved [36,37,99]. 

3. A third type of programmed cell death is called

“cytoplasmic cell death” and it was subsequently

Neuronal cell death in prion diseases
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divided into two subtypes, 3A and 3B [49]. Type 3A

of neuronal death that occurs during development

is characterized by swelling of subcellular

organelles, formation of large empty spaces within

the cytoplasm, and fusion of these spaces to

extracellular space and, finally, disintegration of

the cellular structures. There are no features of

autophagic or heterophagic activity. In the 3B

subtype of cell death there are similar vacuoles

and empty spaces in the cytoplasm but, in

addition, there is a retraction of plasma membrane

and karyolysis. 

According to a recent review [162], it is now

possible to discriminate eleven pathways of cell

death occurring in mammals. These types of cell

death include: 1) necrosis, 2) apoptosis, 3) anoikis ,

4) caspase-independent apoptosis, 5) autophagy, 

6) Wallerian degeneration, 7) excitotoxicity, 8) ery-

thropoiesis, 9) platelet cell death, 10) cornification

and 11) lens cell death. All of them, except for

necrosis, are genetically programmed; however,

morphological features of necrosis are occasionally

observed during the active cell processes [158].

Some of those subtypes occur merely in one type of

cell but others are more common. The first seven

types are observed in nerve cells. The latter

classification is also based on morphological

features because in the majority of cases the

molecular mechanism is not known [162]. Other

investigators have discriminated more types of cell

death, e.g. paraptosis, pyroptosis, oncosis, abortosis,

aposklesis and many more [66,168,188,205,228].

Recently, the Nomenclature Committee on Cell

Death has been established and according to its

suggestions the whimsical names of cell death

should be replaced by more descriptive terms [123].

Prion proteins and the cell death

Mechanistically, neuronal cell death in prion

disease has a remarkable feature that distinguishes

it from neuronal loss in other neurodegenerative

disorders. In the absence of cellular expression of

PrPc, neuronal death does not occur [103]. This was

initially shown in cell culture systems with neurones

derived from PrP-knockout mice [23,78], and later

confirmed using an animal model in which PrPTSE was

transplanted into PrP-deficient tissue without

evidence of neuronal death [15]. Even more

complicated genetically engineered models have

demonstrated that when cellular expression of PrPc

is switched off, cell loss does not occur, and disease

progress is abated; illness is entirely prevented when

neurones cannot produce PrPc, even when non-

neuronal tissue contains dense deposits of PrPTSE. 

Neuronal protection against cell death can also

occur in an animal model in which a different form of

PrPc is expressed that is more difficult to convert to

PrPTSE because of a species barrier. In transgenic mice

co-expressing hamster and mouse PrPc, infection with

hamster prion results in production of PrPTSE without

any pathology or neuronal death [187]. This suggests

that expression of a form of PrPc resistant to protein

conversion protects cells from neurotoxicity. However,

if the transgenic mice only express hamster PrPc in

astrocytes, then infection with hamster prions results

in prion diseases with associated neuronal death. 

In this case, the neuronal death is possibly indirect as

a result of increased neuronal sensitivity to glutamate

toxicity [18].

The potential for PrPc expression to protect against

neuronal cell death runs counter to the finding that

expression is necessary for susceptibility to neuronal

death in prion disease. The only logical explanation is

that its normal cellular function is protective. Loss of

that function due to loss of expression of the protein

would result in alterations in the expression of

proteins with a similar function, resulting in 

a compensatory effect. However, loss of function of

the protein with continued expression, as occurs in

prion disease, does not result in an increase in the

compensatory mechanisms. It has been postulated

that PrPc is an antioxidant (increased expression of

other antioxidants has been noted in PrP-knockout

mice) [26,219]. Simple loss of function is clearly not the

cause of cell death in prion disease, as PrP-knockout

mice do not show altered cell survival in vivo [34];

however, neurons in culture are more susceptible to 

a range of neurotoxic insults when they are derived

from PrP-deficient mice [24,26,27,126,219].

Aggresomes

It is well known that protein aggregates are

generally difficult to unfold or to degrade. Misfolded

and aggregated proteins are usually handled in the

cell through chaperone-mediated refolding or, when

this is impossible, they are destroyed by proteasomal

degradation. Recent findings suggest that there is 

Paweł P. Liberski, David R. Brown, Beata Sikorska, Byron Caughey, Paul Brown
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a third way for a cell to deal with misfolded proteins.

This pathway involves the sequestration of aggre-

gated proteins into specialized “holding stations”, as

they are sometimes called, or aggresomes. In this

mechanism proteins form small aggregates that are

transported along microtubules (MTs) towards 

a microtubule organizing centre (MTOC) by a process

mediated by the minus-end motor protein dynein. At

the organizing centre the particles form a spherical

structure, usually 1-3 μm in diameter, called an

aggresome. Aggresomes are not just static garbage

deposits; they recruit various chaperones, ubiqui-

tination enzymes, and proteasome components. They

are also supposed to trigger autophagy [74]. 

A recent report of Kristiansen et al. [122] suggests

that neuronal propagation of prions invokes a neuro-

toxic mechanism involving intracellular formation of

PrPTSE aggresomes. The authors showed that only in

prion-infected cells did mild proteasome impairment

result in formation of large cytosolic, perinuclear

structures, containing PrPTSE, heat shock protein 70,

ubiquitin, proteasome subunits and vimentin. These

structures are consistent with the definition of

aggresomes. Those authors also claimed to show

aggresomes in vivo in brains of prion-infected mice,

but it is well known that vimentin is present in

neurons only in trace quantities while it is robust 

in glial cells. This means that showing aggresomes 

in vivo needs further studies. A few years earlier

Cohen and Taraboulos [50] showed that hampering

the activity of cyclophilin isomerases with the fungal

immunosuppressant CsA in different cell lines led to

accumulation of a PrP population with prion-like

properties that was not ubiquitylated and partially

resisted proteasomal degradation. These aggregated

molecules formed perinuclear aggresomes. Although

a growing body of evidence seems to confirm the

formation of aggresomes in prion diseases, it must be

mentioned that the majority of the studies were

performed in vitro and PrPTSE in human or animal

diseased brains does not intracellular aggregates

reminiscent of aggresomes. Similar aggregates are

only observed by electron microscopy, but they are

extremely rare.

PrP and Oxidative Stress

Recent work on cell death mechanisms has

focused on pathways involving PrPTSE. Numerous cell

culture lines exposed to neurotoxic PrP fragments

have not always given consistent results, although it

appears that caspases are involved [96,122,191,201],

and that levels of ERK proteins are increased when

cells are treated with toxic forms of PrP [129]. Other

proteins have also been suggested to play a role, such

as p38 [52], JNK, and Bax. However, none of these

observations have been independently confirmed.

Several of the studies have also suggested that

calcium entry is involved [24,172,175,213], but this is 

a common event of many cell death pathways and the

true intracellular pathway has yet to be determined. 

It seems likely that some extracellular event must

trigger the intracellular pathway that leads to cell

death, and many researchers have attempted to

identify binding partners on the cell surface that could

initiate the intracellular process. Several proteins have

been suggested and include the laminin receptor

[190], stress inducible protein-1 [231], and PrPc [20].

Binding of PrP106-126 to PrPc causes direct inhibition

of the antioxidant activity of PrPc [20]. Treatment of

neurons with PrP106-126 causes a marked reduction

in the resistance of neurons to oxidative stress [94],

and a decrease in the activity of other antioxidant

enzymes such as Cu/Zn superoxide dismutase

[30,219]. In addition, the peptide causes a decrease in

the uptake of Cu by neuronal cells [20], and a decrease

of Cu incorporation into Cu/Zn superoxide dismutase

[21]. It is unclear how these changes are brought

about. However, there is evidence that PrP106-126 can

enter cells [160] and might interact with intracellular

proteins in microtubules [28], and aggregates of

PrP106-126 can cause PrPc to become trapped in the

aggregates [20]. 

Interestingly, a subset of antibodies to PrP can

also cause in vitro apoptosis, suggesting that

inhibition of protein catabolism or its interaction

with other proteins might be sufficient to trigger cell

death [29]. Recently, it has been shown that similar

antibodies injected in vivo can also cause neuronal

apoptosis [203]. As antibodies to PrP increase the

toxicity of Cu ions to cells, it is possible that inter-

ference with the protein’s role in Cu metabolism

might be central to the ability of PrP106-126 to

initiate cell death. However, there is evidence to

suggest that the direct effect of PrP106-126 on

neurons is insufficient to complete its execution.

PrP106126 also has the effect of compromising the

neurons’ ability to deal with stressful conditions

[27], and in this way gives neurons a phenotype like

that observed for PrP-deficient neurones [26].

Neuronal cell death in prion diseases
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Execution of cell death then comes about as a result

of this compromised phenotype and one of a number

of different stress events such as the production of

superoxide [27].

Several studies have identified markers of

oxidative stress in the brains of rodents with prion

disease. There are increased levels of oxidised lipids

in the brains of scrapie-infected hamsters [86].

Another study [87] has shown increased levels of

nitrotyrosine and hemeoxygenase-1 in the brains of

scrapie-infected mice. These observations imply that

significant free radical damage is being generated in

the brains of scrapie-infected mice. Additionally,

there is evidence for mitochondrial damage in cells

from brains of scrapie-infected hamsters and mice

[48,128]. These changes include reduction in the

activity of mitochondrial enzymes and structural

abnormalities in the mitochondria. Other enzymes

known to be associated with resistance to oxidative

stress, such as catalase and glutathione-S-transfe-

rase, show increased expression [128]. 

Taken together, these results suggest that

oxidative stress is involved in the pathology of prion

diseases. It is possible that oxidative damage to the

brain in scrapie might be a result of damage to the

mitochondria, which can generate superoxide.

However, the measured level of oxygen radicals

detected with dichlorofluorescein in mitochondrial

fractions from the brains of scrapie-infected mice

was not greatly increased above that of controls

[112]. Reactive oxygen species such as superoxide

are generated by microglia and the implication of

this is that microglia cause damage in the brain of

scrapie-infected mice. In vitro studies have de-

monstrated that microglia can mediate the cell

death caused by PrPTSE or PrP106-126 [27,78,155,

156]. However, microglia activation has also been

postulated to be a response to neuronal damage

rather than the cause of it. Even if neuronal damage

was the sole cause of the microglial response (which

is unlikely given the complexity of cell-cell

interactions), then the microglial activation is still

likely to cause significant production of toxic

substances to trigger neuronal apoptosis.

In summary, the neurotoxic mechanism involved

in prion disease remains unresolved. However, it is

clear that PrPc plays a major role in the mechanism,

making cells susceptible to cell death. Cell death

could involve loss or subversion of the normal

cellular function of the protein and could make cells

susceptible to the toxicity of a variety of agents such

as superoxide released by microglia. Therefore 

a combination of direct and indirect effects caused

by PrPTSE remains the most likely explanation of the

cell death mechanism.

Apoptosis and (macro)autophagy

Using TUNEL methodology, apoptotic neurons

have been repeatedly identified in both naturally

occurring and experimentally induced TSEs [60,69,

70,107-109], and some investigators believe that at

least a proportion of “dark neurons” that are

shrunken, with homogeneously dark cytoplasm, may

represent cells undergoing apoptosis (other workers

regard them as fixation artefacts). The data on

whether neurons, and perhaps even glia, die of

apoptosis in TSE are conflicting, however. While

Migheli et al. [165] found no evidence of apoptosis in

scrapie-infected mouse brains, Giese et al. [79,80],

Lucassen et al. [146], Fraser et al. [70], Williams et al.

[220], Kretzschmar et al. [119-121], and Jamieson 

et al. [100] readily found apoptosis in various

scrapie-infected rodent models. The characteristic

DNA fragmentation ladder has been seen in both

BSE [212] and natural scrapie [62], and in situ

end-labelling (ISEL) revealed apoptotic cells in human

and experimental CJD [63,84,107]. Collectively, these

data strongly suggest that neurons in TSEs die

because of apoptosis. 

It is evident that PrPTSE accumulation in TSE-

affected brain largely precedes development of other

changes – i.e. spongiform change and astrogliosis,

for which PrP serves as a signal for proliferation

[17,18,22,25,88,229]. At the ultrastructural level,

apparently normal looking neurons secrete PrPTSE,

which later fibrillizes and becomes neurotoxic [104],

and in vitro experiments highlight some possible

intermediate steps. 

As mentioned, several synthetic peptides which

form amyloid fibrils, e.g. PrP106126 [19] and PrP118-135

[179], induce apoptosis in a dose-dependent manner.

PrP106-126 may exert its pro-apoptotic characteristics

via disruption of mitochondrial membranes with

subsequent release of cytochrome-c and caspase

activation [175]. Next, intracellular Ca2+ concentration

rises and another family of proteases, calpains, are

activated. In contrast, Bounhar et al. [14] found that

PrP may serve as an anti-apoptotic factor protecting

neurons in vitro from Bax-induced apoptosis. Removal
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of four of five octarepeats (codon 51-91 of PrP) or

D178N and T183A PRNP mutations completely abo-

lished this effect. It is apparent that a functional gain of

PrP (as PrPTSE) may result in changes of anti-apoptotic

into pro-apoptotic properties of PrP, which is vaguely

reminiscent of changes of anti-oncogenic into 

oncogenic functions of p53 protein (also involved in

apoptosis).

Moreover, there is no consistent correlation

between PrPTSE, pathology and neuronal death.

Following transmission of BSE from cattle to mice,

Lasmezas et al. [127] found two lines of BSE-infected

mice, one with PrPTSE and typical TSE pathology

(vacuolation and astrogliosis), and a second without

PrPTSE but with prominent apoptosis of neurons.

These observations suggest that PrPTSE is not directly

responsible for apoptosis.

However, in another experiment, where neuronal

PrPc was depleted in NFH-Cre/MloxP transgenic mice,

after early spongiform change had developed

following scrapie neuroinvasion, Collinge’s group [151]

found a reversal of spongiform change, while 

PrPTSE, released probably from glial cells, steadily

accumulated. These PrPc-depleted Tg mice also

became disease-free; thus, the lack of neuronal PrPTSE

and/or PrPc protected them from the final prion-

related neuronal degeneration. In contrast, in

transgenic mice in which PrP transgene was

exclusively expressed in astrocytes under the control

of GFAP promoter, spongiform change and neuronal

decay were observed following scrapie infection [103].

In an independent experiment, the highest

densities of apoptotic cells were observed in those

neuroanatomical areas in which spongiform change is

minimal or absent – viz. retina and cerebellum [120].

Thus, apoptosis and the presence of PrPTSE may not

only be uncoupled under specific experimental

conditions but may be directly (not mediated through

PrPTSE) linked to scrapie infectivity.

Neurons may only degenerate and eventually die

through a limited number of pathologic pathways.

Cellular necrosis is caused by a sudden brain insult,

Neuronal cell death in prion diseases

FFiigg..  88..  An autophagic vacuole containing a part of the cytoplasm. Phagophore is indicated by arrows; mt,
microtubules. A hamster brain infected with the Echigo-1 strain of CJD. Original magn. × 50 000; bar = 100 nm



Folia Neuropathologica 2008; 46/1 12

leading to destruction of the entire cell, the remnants

of which attract inflammatory cells. Apoptosis is 

a programmed molecular process following a “suicidal”

stimulus, which leads to a hierarchical gene response.

Apoptotic cells, in contrast to necrotic cells, attract no

inflammatory response. As the relative lack of classical

immunological response in TSE-affected brain is

paradigmatic for the whole group of these diseases

[31], neurons, by definition, should die by apoptosis

and not necrosis.

A determinant for apoptotic cell detection is the

time over which neurons die. Even when the number

of neurons in dorsal lateral geniculate nucleus (dLGN)

following intraocular inoculation drops from over 

22 000 to less than 2000 [101], the number of

apoptotic nuclei detected by TUNEL method is low

[70]. Because apoptotic cells are most readily

detected in highly structured neuronal systems such

as the retina and hippocampus, what is observable in

less structured regions may represent only a minute

proportion of all apoptotic events occurring in 

TSE-affected brains.

As an evolutionarily ancient cellular response to

intra- and extracellular noxious stimuli, autophagy

may precede or co-exist with apoptosis, and the

process may be induced by apoptotic stimuli [38,227].

Furthermore, the level of autophagy may define the

sensitivity of a given neuronal population to apoptotic
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FFiigg..  99..  Neuronal autophagic vacuoles in an early stage of development. Note that sequestrated cytoplasm is of
high electron density (arrow). SV – synaptic vesicles. A hamster brain infected with the 263K strain of scrapie.
Original magn. × 12 000; bar = 200 nm
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stimuli, which may underlie the phenomenon of

“selective neuronal vulnerability”. Thus, autophagy

and apoptosis are often interwoven [40].

Cellular autophagy is a physiological degradation

process employed, like apoptosis, in embryonic

growth and development, cellular remodelling and

the biogenesis of some subcellular organelles – viz.

multilamellar bodies [65,91,192]. Autophagosomes

coalesce with lysosomes to form degraded auto-

phagic vacuoles, and as in apoptosis, only excessive

or misdirected autophagy causes a pathological

process. Autophagy is highly enhanced in other brain

amyloidoses or conformational disorders [83],

Alzheimer’s disease [206], Parkinson’s disease [2],

and Huntington’s disease, in which the signal for

autophagy is huntingtin [110]. Here, we extend 

these observations using different models of scrapie

and CJD.

Neuronal autophagy in TSEs

Data on autophagy in TSEs are very limited,

consisting of a few electron-microscopic papers,

including reports from our own laboratories

[132,136,143-145,199]. The pioneering work was

published in Acta Neuropathologica by Boellaard et

al. [9]. Our initial experimental approach using the

hamster-adapted 263K or 22C-H strains of scrapie

Neuronal cell death in prion diseases

FFiigg..  1100..  Branching autophagic vacuole within a myelinated fibre. Note that sequestrated cytoplasm is of
high electron density. A hamster brain infected with the 263K strain of scrapie. Original magn. × 30 000;
bar = 200 nm
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[132,136,145] was subsequently extended by studies

of human brain biopsies from patients with sporadic

CJD, variant CJD, and FFI [144]. Experimentally

infected animal models are widely used because 

of their relatively short incubation periods that, for

mice, range from 16 to 18 weeks, and for hamsters

from 9 to 10 weeks for the 263K strain and 24-26

weeks for the 22C-H strain.

Formation of autophagic vacuoles 
in TSEs-affected brains

Autophagic vacuoles are areas of the cytoplasm

sequestered within double or multiple membranes

(phagophores) of unknown origin; one possible

source is the endoplasmic reticulum (Fig. 8). They

contain ribosomes, small secondary vacuoles, and

occasional mitochondria. Some vacuoles present 

a homogeneously dense appearance.

We observed neuronal autophagic vacuoles in

different stages of formation in the same specimens

and our interpretation of the ‘maturity’ of their

formation may or may not equate to actual

developmental stages. Initially, a part of the neuronal

cytoplasm was sequestered within double or multiple

membranes (phagophores) and often exhibited

increased electron-density (Figs. 9-11). The intra-

cytoplasmic membranes multiplied in a labyrinth-like
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FFiigg..  1111..  Fully developed autophagic vacuole. Phagophores are pointed to by arrows. Note that part of the
sequestrated cytoplasm is of high electron density. A hamster brain infected with the 263K strain of
scrapie. Original magn. × 12 000; bar = 200 nm
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Neuronal cell death in prion diseases

FFiigg..  1122..  Section through a myelinated fibre showing formation of autophagic vacuoles (hearts). A hamster
brain infected with the 263K strain of scrapie. Original magn. × 8300; bar = 100 nm

manner (Fig. 11). The autophagic vacuoles then
expanded and eventually a vast area of the cytoplasm
was transformed into a merging mass of autophagic
vacuoles. Occasionally, a single large autophagic
vacuole was visible. Autophagic vacuoles developed
not only in neuronal perikarya but also in neuronal
processes, eventually replacing the whole cross-
section of affected neurites (Fig. 9, 12). In a few
specimens we found round electron-dense structures
that we identified as aggresomes. In general, there
was little qualitative difference between these two
models, although hamsters inoculated with the 263K
strain showed a more robust pathology.

Conclusions and hypotheses

One of the major problems of TSEs pathogenesis
is the cause of neuronal degeneration with eventual
neuronal loss [69,136]. Whether the prion is or is not
the pathogen, it is widely accepted that the basic

underlying pathological event is the conversion of 

a normal isoform of prion protein (PrPc) into its

pathological misfolded isoform (PrPTSE) [15,51,178,

183], involving an α-helical to β-pleated sheath (or 

β-helical) transformation. Using a highly sophisti-

cated mathematical model, Stumpf and Krakauer

[210] tried to reason whether PrPTSE causes neurons

to die because of neurotoxic effect of PrPTSE (gain of

function), or loss of function of PrPc. They assumed

that if cells die of apoptosis because of neurotoxic

gain of function of PrPTSE, the cells should die rapidly,

and the amount of PrPTSE should be low. Indeed, in

both CJD and FFI, there are more apoptotic cells and

a lower amount of PrPTSE [107] than in GSS, where

the amount of amyloid is vast and the number of

apoptotic cells is low [84].

As already mentioned, three types of programmed

cell death (PCD) are known: apoptosis, autophagy and

swelling of intracellular organelles. Apoptosis has
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FFiigg..  1133..  “Spongiform” vacuoles within a dendrite (because a synaptic terminal with vesicles (SV) is attached
to this vacuole) containing a structure at the top suggestive of undergoing autophagy. Note that
sequestrated cytoplasm is of high electron density. Curled membrane fragments are indicated by arrows.
A hamster brain infected with the 263K strain of scrapie. Original magn. × 8300; bar = 100 nm

been discussed already, and in this part we will
concentrate on autophagy in regard to TSEs.

Whereas apoptosis in TSE is relatively well
understood, autophagy is not. As already mentioned,
autophagic cell death or type II PCS is a process used
by a cell to remove the bulk of organelles, e.g. during
growth and development, but which becomes
pathological if too robust or wrongly placed [39].
According to Bursch et al. [39], the appearance of
“autophagic vacuoles in dying cells by electron
microscopy is taken as condition sine qua non (i.e. an
absolute prerequisite) to denote cell death as
autophagic/type II PCD”. To this end, the mere
presence of autophagic vacuoles is relatively well
demonstrated in TSE.

There are several uncertainties in our thinking on

neuronal autophagy in TSEs. First, autophagy is

regarded as a short-term response to nutrient

limitations [61], which is, by definition, not the case in

slow transmissible diseases like TSEs. However, it

seems that autophagy is activated to prevent

apoptosis; when autophagy is blocked, apoptosis

ensues. On the other hand, when apoptosis is blocked

as in Bax/Bak-deficient mice, autophagy is activated

as a cell-survival mechanism [148]. However, when all

subcellular organelles are self-eaten, the cell

eventually dies. An analogous situation was observed

when inhibition of autophagosomes and lysosomes

was accomplished via targeting of LAMP2 by RNA

interference [82]. A dual role for autophagy was

envisaged – i.e. protective role against apoptosis and

detrimental role in cell death – and both of these are

mediated by the same set of ATG genes [61]. Thus, the
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Neuronal cell death in prion diseases

FFiigg..  1144..  Myelinated process filled with numerous autophagic vacuoles. Centre of the process is already
cleared (heart) to form a spongiform vacuole; the curled membrane fragments (an arrow) are visible. 
A hamster brain infected with the 263K strain of scrapie. Original magn. × 30 000; bar = 200 nm

abundant presence of autophagy in TSEs suggests

that neurons either try to escape apoptosis or die by

autophagy via one of the programmed-cell death

pathways.

A second uncertainty pertains to the relationship

between autophagy and the abnormal processing of

PrP. The significance of autophagy for controlling the

outcome of misfolded PrPTSE is unclear. PrPc is

entirely translocated into the lumen of the

endoplasmic reticulum where the N-terminal signal

peptide is cleaved away and the C-terminal GPI is

added (Figs. 3-4) [92]. Then, PrPc is transported on

the cell surface. The misfolded PrPTSE is localized to

the cell surface and the endosomal-lysosomal

compartment (Fig. 6); and the conversion of PrPc

into PrPTSE presumably takes place somewhere within

one or more of these subcellular compartments

[13,41,42]. However, misfolded PrPTSE is directed to the

aggresomes where, according to the hypothesis put

forward by Cohen and Taraboulos [50], it may form 

a “seed” for seeded-nucleation process of forming

more PrPTSE. Then, aggresomes are engulfed by auto-

phagic vacuoles that, in turn, fuse with lysosomes

containing PrPTSE, and the process of nucleation may

either be initiated or it is perpetuated. It was found

that aggresomes may indeed induce the formation of

autophagosomes [117].

A third uncertainty is how autophagy contributes

to overall pathology underlying TSEs. The hallmark of

TSEs is the vacuole which is intracellular “empty”

space surrounded by a single or a double membrane.

The histogenesis of vacuoles is not well understood

and most ultrastructural studies suffer from the

inability to ascertain the subcellular organelles from

which vacuoles originate; dilated endoplasmic

reticulum or mitochondria have been suggested [102].

Our own unpublished work suggests that vacuoles are

formed relatively abruptly with no detectable

transitional stages [Gibson and Liberski, personal

communication]. It is tempting to speculate that

vacuolation in TSEs is somehow related to type III PCD

characterized by the presence of large, membrane-
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FFiigg..  1155..  Two dystrophic neurites filled with numerous autophagic vacuoles (arrows) and lysosomal electron-
dense bodies. A hamster brain infected with the 263K strain of scrapie. Original magn. × 30 000; bar = 200 nm

bound intracellular empty spaces without the

participation of lysosomes. The other option, that

tissue destruction by autophagy results in vacuolation

(Figs. 13, 14), would imply that autophagic vacuoles

should be detected prior to spongiform vacuoles.

Indeed, in the terminal stages of sheep scrapie 

[M. Jeffrey – personal communication] and in human

TSEs (CJD, GSS and FFI) [144], little or no autophagy is

seen but robust vacuolation is typical if not

pathognomic. In contrast, when earlier stages of TSE

have been monitored in experimental rodent models,

both autophagy and vacuolation have been reported

[105,142,145]. Jeffrey et al. [105] have suggested that

their presence reflects the robust accumulation of

misfolded PrPTSE, overloading of the neuronal catabolic

machinery, and, eventually, bulk removal of damaged

neurons via autophagy.

If this scenario is correct, the pathology of TSEs is

akin to the reactivation of certain embryonic

processes in which bulk removal of cells are present;

i.e. remodelling of insect larvae [173]. Nearly 20 years

ago, Elizabeth Beck [8] suggested that robust

vacuolation like that characteristic of TSEs is present

when rats are inoculated with a suspension of cells

from normal immature cerebellum. Neurons of

inoculated rats not only demonstrated intracyto-

plasmic vacuoles but, at the ultrastructural level,

showed abundant coated pits and vesicles – pheno-

mena of widespread appearance in TSEs.

The other form of neuronal degeneration is

neuroaxonal dystrophy [77,131,133,134]. The ultrastruc-

tural correlate of NAD is the dystrophic neurite – an

axon or dendrite filled with electron-dense inclusions,

many of which were recently recognized as small

autophagic vacuoles (Fig. 15) [174]. Both immature

autophagic vacuoles immunogold-labelled with abs

against Cat-D and mature vacuoles containing

catepsin were observed within those neurites [174]. As

dystrophic neurites are abundant in TSEs [131,141], it is

plausible that (macro)autophagy plays a role in

neuronal degeneration in TSEs. However, taking into

account the evidence that autophagy may prevent
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apoptosis, it is also possible that abundant presence of

autophagic vacuoles within dystrophic neurites

actually reflects neurons struggling to survive in the

noxious environment of misfolded PrPTSE.

In summary, autophagy certainly does occur in

TSE, but its pathogenetic role as a cause of cell

death is uncertain. In particular, more research will

be necessary to determine the connection, if any,

between programmed cell death and the formation

of spongiform change. 
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